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Human adenovirus (Adv) infection is responsible for most community-acquired pneumonia in infants and children, which results
in significant morbidity and mortality in children every year. MicroRNAs (miRNAs) are associated with viral replication and host
immune response. Knowing the miRNA expression profile will help understand the role of miRNAs in modulating the host
response to adenovirus infection and possibly improve the diagnosis of adenovirus-infected pneumonia. In our study, total RNA
extracted from whole blood of adenovirus-infected pneumonia children and healthy controls were analyzed by small RNA deep
sequencing. Expression profiles of whole blood microRNAs were altered and distinctly different in adenovirus-infected children.
The top 3 upregulated miRNA (hsa-miR-127-3p, hsa-miR-493-5p, and hsa-miR-409-3p) were identified in adenovirus-infected
children and provided a clear distinction between infected and healthy individuals. Potential host target genes were predicated
and validated by qRT-PCR to study the impact of microRNAs on the host genes. Most of the target genes were involved in the
MAPK signaling pathway and innate immune response. These highly upregulated microRNAs may have crucial roles in Adv
pathogenesis and are potential biomarkers for adenovirus-infected pneumonia.

1. Introduction

Human adenovirus (Adv) infection is responsible for most
community-acquired pneumonia in infants and children
[1, 2]. Adv causes infections for 5–10% of upper and lower
respiratory tract infections in children, which results in
pneumonia and nearly 1.3 million deaths of children every
year [3, 4]. The fatality rates for untreated severe pneumonia
or disseminated disease caused by Adv may even exceed to
50% [5, 6]. There are no efficacious antiviral drugs for Adv
treatment until now. Also, the traditional diagnosis of Adv
infection is limited. Therefore, to discover the interaction
between the virus and its host will help us to find novel treat-
ment and diagnosis for Adv infection.

Human Advs are nonenveloped double-stranded DNA
viruses and belong to the Adenoviridae family [7, 8]. Human
Advs are divided into seven subgroups including 53 sero-
types based on immunologic and biological characteristics.
Adv replicates efficiently in human cells and triggers an
innate immune response such as inflammatory response in
the host cells. Also, viral infection has proved to have a great
impact on cellular small RNA expression and gene expres-
sion [9–11]. Adv infects the host cells through binding to
different cellular receptors such as coxsackievirus and adeno-
virus receptor (CAR) [12]. During Adv DNA replication,
host cellular proteins such as nuclear factor I and POU2F1
are used by Adv [13, 14]. In turn, the host will trigger an
innate immune response against Adv infection. However,
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the details of Adv and host interaction still remains poorly
defined.

Small RNAs are important regulators that modulate
development, proliferation, differentiation, and apoptosis of
organisms [15, 16]. Small RNAs include microRNA
(miRNA), siRNA, tRFs, piRNA, and rasiRNAs, which regu-
late gene expression in a wide range of processes such as viral
replication and host immune response. miRNAs are the most
well-studied small RNAs during the latest decades. miRNAs
are very important regulators that modulate transcriptome
changes [17]. miRNAs regulate gene expression in a wide
range of physiological and pathological processes such as in
immune response and viral replication [18]. Although miR-
NAs have been examined in Adv type 3-infected human
laryngeal epithelial cells and Adv type 2-infected human lung
fibroblast cells [19, 20], there is no research about small RNA
profiling in whole blood of Adv-infected pneumonia
children. In our study, we sought to present the different
miRNA profiles between Adv-infected pneumonia children
and healthy controls, identify candidate diagnostic bio-
markers for pneumonia with Adv infection in children, and
examine the role of miRNAs in host defense response in
Adv-infected children.

2. Materials and Methods

2.1. Patients. The whole blood samples used in the study were
obtained from Guangzhou Women and Children’s Medical
Center. Children diagnosed with human Adv pneumonia
were included in the study. The diagnosis of human Adv
pneumonia was considered certain when it was associated
with the following criteria: (1) lower respiratory and/or sys-
temic symptoms, (2) lung infiltration on chest radiography
or computed tomography (CT) scan, and (3) positive results
for human Adv IgM antibody in sera and/or human Adv
DNA by PCR in throat swabs and/or bronchoalveolar lavage
(BAL) fluid. A total of 33 samples from patients and 33 sam-
ples from healthy volunteers were used in the study. The ages
of all patients (male or female) and healthy volunteers (male
or female) range from one year to three years. The study was
approved by the Ethics Committee at Guangzhou Women
and Children’s Medical Center (number 2014121815), and
written informed consent was obtained from all guardians.

2.2. RNA Extraction and Small RNA Sequencing. The blood
samples of the patients and volunteers were collected in
anticoagulant tubes. The total RNA was isolated using Ribo-
Pure™ Blood RNA Isolation Kit (Ambion, USA) according to
the manufacturer’s protocol. The extracted small RNAs were
treated with DNase before deep sequencing. RNA concentra-
tion was determined using a NanoDrop ND1000 system
(Thermo Fisher Scientific, South San Francisco, CA), and
their integrity was verified using an Agilent 2100 Bioanalyzer
(Agilent Technologies, USA). Small RNA deep sequencing
was performed as previously described [21]. A total of 3 sam-
ples from patients and 3 samples from healthy volunteers
were used for small RNA deep sequencing in the study.
The clinical characteristics of the 3 patients and 3 healthy
volunteers are summarized in Table 1.

2.3. Cell and Virus Culture. Human primary lung fibroblasts
(IMR-90) and human 293T cells were grown in Dulbecco’s
modified Eagle’smedium (DMEM) (HyClone) supplemented
with 10% fetal bovine serum (Invitrogen), streptomycin, and
penicillin (Invitrogen). All virus infections were carried out
in serum-free medium for 1 h, followed by addition of saved
complete medium.

2.4. Transfection. miRNA inhibitors (GenePharma Co.,
China) were transfected into IMR-90 cells with Lipofecta-
mine RNAiMAX (Invitrogen) at final concentrations of
100 nM according to the manufacturer’s protocol.

2.5. Virus Growth Assay. IMR-90 cells transfected with
miRNA inhibitors were infected with HAdV5 (isolated from
patients) at an MOI of 10 in serum-free medium. Virus titers
were determined 72 h after infection by plaque assays
performed on 293T cells [22, 23].

2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis. A
qRT-PCR experiment was performed using the Power SYBR
Green PCR Master Mix. Each reaction was performed in a
10μL volume system containing 0.5μL of cDNA, 0.5μL of
each primer, 5μL of Power SYBR Green PCR Master Mix,
and 3.5μL of ddH2O. The reactions were incubated in a 96-
well plate at 95°C for 10 minutes, followed by 39 cycles of
95°C for 15 seconds and 62°C for 1 minute. For miRNA
quantitation, 10ng of total RNA was reverse-transcribed
using specific stem-loop primers. U6 was used as an endoge-
nous control.

2.7. Data Analysis. miRNA cluster and family information
from miRBase (miRBase 20, http://www.mirbase.org/) was
used to annotate the cluster of miRNAs. miRNA target genes
were predicted based on two software: miRDB software
(http://mirdb.org/) and TargetScan software (http://www.
targetscan.org/).

2.8. Statistical Analysis. Data were analyzed using Graph-
Pad Prism 6.0 software (La Jolla, CA, USA). The two-
tailed Student’s t-test was used to determine the signifi-
cance of statistical data between two experimental groups.
Data were considered significant at ∗P < 0 05, ∗∗P < 0 01,
and ∗∗∗P < 0 001.

3. Results

3.1. Different Expressions of MicroRNAs in Adv-Infected
Children vs. Healthy Children. To study the impact of Adv
infection on cellular small RNA expression in pneumonia
children, deep sequencing of small RNAs was performed in
our study. Accordingly, we found an apparent small RNA
peak at 21–24 nt for miRNAs (Figure 1(a)). When we ana-
lyzed the differently expressed small RNAs, 118 miRNAs
were found differently expressed in Adv-infected children
vs. healthy children in a volcano plot (Figure 1(b)). We
mapped the clean reads from each group to the known
miRNA sequences and identified 908 miRNAs in Adv-
infected children versus healthy controls (Figure 1(c)).
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Furthermore, hierarchical cluster analysis of differentially
expressed miRNA is shown in Figure 2. Specially, 77 dif-
ferentially expressed miRNAs in the 6 samples passed
our fold-change filter (log2 fold change > 1 0), among
which 20 miRNAs that have high expression (reads up
to 1000 in Adv samples) and showed significant different
expressions were selected for further analysis (Table 2).

3.2. Validation of Differentially Expressed miRNAs. To con-
firm the differential expression of miRNAs in Adv patients
vs. healthy controls, we performed qRT-PCR assays in our
study. The result showed that hsa-miR-127-3p, hsa-miR-
379-5p, hsa-miR-493-5p, hsa-miR-409-3p, hsa-miR-99b-5p,
hsa-miR-370-3p, and hsa-miR-381-3p were upregulated in

whole blood samples from 5 Adv-infected children vs. 5
healthy controls (Figure 3(a)), while hsa-miR-101-3p, hsa-
miR-150-5p, hsa-miR-29a-3p, and hsa-miR-342-3p were
downregulated in whole blood samples from 5 Adv-infected
children vs. 5 healthy controls (Figure 3(a)), which was com-
parable with our sequencing data. To identify candidate diag-
nostic miRNA biomarkers, we focused on the upregulated
miRNAs. More samples (15 Adv-infected children vs. 15
healthy controls) were collected to verify the expression of
the upregulated miRNAs (Figure 3(b)). From the result, we
found that hsa-miR-127-3p, hsa-miR-493-5p, and hsa-miR-
409-3p were significantly increased. Also, after depleting
these miRNAs with miRNA inhibitors, the viral replications
were significantly decreased (Figure 3(c)). These findings
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Cluster analysis of differentially expressed miRNA
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Figure 2: Hierarchical cluster analysis of differentially expressed miRNAs.
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imply that our selected miRNAs may reflect the infection of
Adv, and such miRNAs can likely serve as biomarker candi-
dates for Adv-infected patients.

3.3. Predict Target Genes of Differentially Expressed miRNAs.
To study the biological significance of miRNAs, we then pre-
dicted the computational target genes of miRNAs. We
focused on the targets of verified miRNAs with distinct
expression profiles. Go enrichment of the predicted target
genes of the miRNAs showed that the target genes were
mainly involved in cellular process and molecular function
(Figure 4(a)). In particular, most of the target genes partici-
pated in the MAPK signaling pathway and Ras signaling
pathway (Figure 4(b)). The top five predicted target genes
of hsa-miR-127-3p, hsa-miR-493-5p, or hsa-miR-409-3p
are listed in Table 3 by the highest miRNA target score from
two miRNA predictive software.

The target genes were selected for further validation with
qRT-PCR, and we found that the mRNA expression of 8
genes (PSMB5, ITGA6, MYCBP2, TCF7L2, UBE2V2,
HIPK1, UBE2D2, and KANSL1) were downregulated in
Adv-infected patients compared to healthy controls
(Figure 5). Most of them are transcription factors or factors
involved in the ubiquitin pathway. The downregulated
mRNAs may indicate the mechanism of Adv infection and
Adv-induced pneumonia.

4. Discussion

Human Advs are common causative pathogens of acute
respiratory infections in children. The treatment of human
Adv infections is limited because prospective, randomized

therapeutic trials have not been done. Therefore, it is very
important to discover the mechanism of Adv-infected pneu-
monia and search the biomarkers for Adv-infected pneumo-
nia in children. The regulatory potential of miRNA is well
defined, and the different profiles of miRNA expression are
the result of diverse diseases including viral infections. In
our study, we found that the miRNA profile in whole blood
of Adv-infected children was different from that of healthy
children. Blood samples of Adv-infected children reflect the
associated pathology of Adv infection and thus provide a bet-
ter understanding of the disease.

Profiling of miRNA expression from Adv-infected blood
samples identified a cluster of 118 miRNAs significantly
altered. The altered blood miRNA profile was similar to cells
infected with Adv reported previously [19, 20], indicating
that the different expressed miRNAs identified in our study
could be taken as the candidate diagnostic biomarkers for
pneumonia with Adv infection in children. Among these
different expressed miRNAs, hsa-let-7e-5p was reported
to involve in the replication of influenza infection [24].
hsa-miR-127-3p was reported to affect the Epstein-Barr
virus-associated lymphoma through targeting the PTEN-
AKT-mTOR pathway [25]. Altogether, these miRNAs play
important roles in innate immune response or viral repli-
cation, thus affecting the outcome of the disease.

Through miRNA target gene GO analysis, we found that
most target genes of different expressions of miRNAs were
involved in the MAPK signaling pathway. The MAPK signal-
ing pathway is activated by Toll-like receptors [26], which
play important roles in innate immune response against viral
infection. Also, the activation of the MAPK pathway will
result in the activation of the NF-κB signal pathway, which

Table 2: Top 20 different expressed miRNAs.

miRNA name Reads in ADV Reads in control Log2 fold change P value

has-miR-381-3p 9358 3507 1.17 0.00511

has-miR-486-5p 5480 2240 1.12 0.00434

has-miR-409-3p 4916 1223 1.61 0.00023

has-miR-486-3p 4745 1922 1.12 0.00402

has-miR-127-3p 3950 753 2.10 6.35E − 09
has-miR-182-5p 2396 870 1.17 0.00762

has-miR-99b-5p 2241 650 1.46 0.00066

has-miR-379-5p 1687 378 1.88 3.31E − 07
has-miR-370-3p 1682 617 1.18 0.00621

has-let-7e-5p 1239 429 1.33 0.00030

has-miR-493-5p 1089 237 1.87 1.63E − 06
has-miR-494-3p 1070 342 1.54 3.94E − 09
has-miR-101-3p 57,893 150,004 −1.12 0.00825

has-miR-142-3p 24,616 77,702 −1.25 0.00841

has-miR-150-5p 15,854 41,850 −1.25 0.00025

has-miR-29a-3p 6679 18,944 −1.40 9.01E − 07
has-miR-186-5p 6093 13,066 −1.07 1.49E − 09
has-miR-27a-3p 5558 11,953 −1.00 0.00170

has-miR-342-3p 3373 13,980 −1.87 1.37E − 09
has-miR-29b-3p 1339 3404 −1.25 1.60E − 05
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will stimulate the production of inflammatory cytokines and
MMPs [27] and finally lead to pneumonia. Thus, the altered
miRNA expression profile of whole blood from Adv-infected
children partly reflected the mechanism of Adv-infected
pneumonia.

With a developmental framework or disease process,
miRNAs exhibit dynamic expression patterns. In our study,
we characterized the miRNA expression profile of Adv-
infected children using deep sequencing analysis and iden-
tified that many miRNAs were differently expressed in
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Figure 3: Quantification of miRNA expression levels by qRT-PCR. (a) Quantification of top 20 differently expressed miRNAs, including
upregulated and downregulated miRNAs. Five samples from Adv-infected children and 5 from healthy controls were used in the
experiment. (b) Quantification of top 5 upregulated miRNAs. 15 samples from Adv-infected children and 15 from healthy controls were
used in the experiment. (c) The effect of miRNA inhibitors on the replication of Adv. After transfection with miRNA inhibitors, cells were
infected with HAdV5 at an MOI of 10. Virus was harvested, and the titer was determined on 293T cells at the indicated time points. Data
are shown as means ± SD from three independent experiments. ∗∗P < 0 01 and ∗∗∗P < 0 001 (Student t test).
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Figure 4: Go enrichment of predicted target genes. (a) The GO classification enrichment of target genes. (b) The KEGG pathway scatterplot
of target genes.
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Adv-infected children when compared with healthy chil-
dren. Those with the greatest differences were chosen for
further verification. In particular, the expressions of hsa-
miR-127-3p, hsa-miR-493-5p, and hsa-miR-409-3p from
20 Adv-infected children were significantly higher than
those from 20 healthy controls, indicating that these miR-
NAs could be taken as good diagnostic biomarkers for
Adv-infected pneumonia.

To further explore the possible molecular mechanisms of
the differently expressed miRNAs in Adv-infected children,
we predicted the possible target genes of hsa-miR-127-3p,
hsa-miR-493-5p, and hsa-miR-409-3p and found that most
of them are transcription factors or factors involved in the
ubiquitin pathway. Especially, after verifying the predicted

target genes with qRT-PCR, 8 genes (PSMB5, ITGA6,
MYCBP2, TCF7L2, UBE2V2, HIPK1, UBE2D2, and
KANSL1) were found significantly downregulated in samples
from Adv-infected children. In particular, MYCBP2 is an E3
ubiquitin protein ligase [28, 29], which regulated the cAMP
and mTOR signaling pathway. The mTOR signaling pathway
plays a critical role in effector T cell function, the downregu-
lation of which will result in impaired cell cytolysis and inca-
pability of virus elimination. UBE2V2 is an ubiquitin-
conjugating enzyme and is involved in the differentiation of
monocytes, which can produce proinflammatory cytokines
like MIP-1β [30, 31]. Thus, the downregulated UBE2V2 will
result in abnormal differentiation of monocytes and more
proinflammatory will be produced, which in turn aggravates
pneumonia. UBE2D2 is essential for the activation of MAVS
and RIG-I in response to viral infection [32–34]. The down-
regulation of UBE2D2 will result in abnormal activation of
MAVS and RIG-I signal and virus clearance. These findings
imply that the miRNA expression profile changed in Adv-
infected children resulting in different transcriptome profiles,
which reflects the mechanism of Adv replication and the for-
mation Adv-infected pneumonia.

5. Conclusions

In summary, we identified the 3 most markedly differently
expressed miRNAs in whole blood from Adv-infected chil-
dren, which can be taken as biomarkers for Adv-infected
pneumonia. Simultaneously, based on target gene prediction
and qRT-PCR analysis, we found that genes MYCBP2,
UBE2V2, and UBE2D2may play important roles in viral rep-
lication and Adv-induced pneumonia. However, additional
studies are necessary to clarify their roles in these processes,
which will provide a physiological basis for the treatment of
Adv-infected pneumonia.

Table 3: Top 5 predicted target genes.

miRNAs Target Gene description

hsa-miR-127-3p

PSMB5 Proteasome (prosome, macropain) subunit, beta type 5

KIF3B Kinesin family member 3B

ITGA6 Integrin, alpha 6

BCAS3 Breast carcinoma-amplified sequence 3

MTSS1L Metastasis suppressor 1-like

hsa-miR-493-5p

SP3 Sp3 transcription factor

MYCBP2 MYC-binding protein 2, E3 ubiquitin protein ligase

TCF7L2 Transcription factor 7-like 2 (T-cell specific, HMG box)

UBE2V2 Ubiquitin-conjugating enzyme E2 variant 2

HIPK1 Homeodomain-interacting protein kinase 1

hsa-miR-409-3p

RAB10 RAB10, member RAS oncogene family

UBE2D2 Ubiquitin-conjugating enzyme E2D 2

KANSL1 KAT8 regulatory NSL complex subunit 1

MTF2 Metal response element binding transcription factor 2

ELF2 E74-like factor 2 (ETS domain transcription factor)
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Figure 5: Validation of the expression of top 5 predicated target
genes by qRT-PCR. Relative mRNA expression between 10
samples from Adv-infected children and 10 samples from healthy
controls. Data are shown as means ± SD from three independent
experiments. ∗∗∗P < 0 001 (Student t test).
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